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On a Dimensional Reduction Method.
I11. A Posteriori Error Estimation and an
Adaptive Approach*

By M. Vogelius and I. Babuska

Abstract. This paper is the last in a series of three which analyze an adaptive approximate
approach for solving (n + 1)-dimensional boundary value problems by replacing them with
systems of equations in n-dimensional space.

In this paper we show how to find reliable a posteriori estimates for the error and how
these can also be used in the design of an adaptive strategy. Various numerical examples are
contained in the paper.

1. Introduction. In a recent paper, [6], we introduced the concept of dimen-
sionally reduced solutions to an elliptic boundary value problem. These are
obtained by projecting (in the energy) the true solution of the boundary value
problem in the (n + 1)-dimensional domain w X [—h, k] onto spaces of the form

N
Vi = [ 2 WY (r/h)lw arbitrary},

Jj=0

where (y;}72, is a given set of functions on [-1, 1], (x are coordinates on w and y
ranges over [-h, h]). For some basic ideas behind this concept, see [6] and the
introduction to [5]. In [6] the focus was on the right selection of the y’s. It was
shown there that for a very wide class of problems the Y¥;’s should be selected such
that

span{\[/j}jz.’;;1 = 9U(P*),

where P is a second order ordinary differential operator intrinsic to the elliptic
boundary value problem.

In [7] we analyzed the convergence properties of such methods as the order, N,
increases.

The present paper, which is a direct continuation of the previous work, deals
with the problem of reliable a posteriori error estimation. It also designs an
adaptive algorithm for the selection of the right dimensionally reduced solution. As
it follows from [6] and [7], a high number of basis functions y; may be needed
(depending on the desired accuracy) either if the thickness of the domain, A, is not
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sufficiently small or there are singularities in the true solution to the boundary
value problem. (Because of the corner in the domain such singularities are often
present in the neighborhood of dw X {-h} and dw X {Ah}.)

Since singularities are local phenomena, it is of the utmost practical importance
to introduce dimensionally reduced solutions that permit N, the order, to vary
throughout the domain w. This aspect, specifically the adaptive choice of the
distribution for N, is also addressed here.

We now give a short review of the contents of this paper.

In Section 2 we give a precise formulation of the model problem (which is
identical to that of [6]) and prove some auxiliary results.

Section 3 is devoted to the construction of an estimator for the error. The main
theoretical results in this section are Theorem 3.1 and Theorem 3.2, which show
that the introduced estimator is an upper bound for the error but on the other hand
is not too conservative (away from singularities and for reasonably small A).
Numerical experiments verify this and furthermore indicate that even for relatively
large h, or strong singularities, the estimator is of the same magnitude as the error.
The problems of how to detect if the estimator is unacceptably conservative and
how to improve it are addressed in Section 4.

In Section 5 we extend the concept of dimensional reduction to include a
possibly different number of basis functions, y;, in different parts of the domain.
We also design an adaptive strategy to select the right distribution for the number
of basis functions. This strategy is based on our ability to give reliable estimates for
the error much in the same way as the strategy used by the finite element solver
F.E.A.R.S. to generate an ‘optimal’ grid; cf. [1].

Finally Section 6 (and also 4) contains a numerical example that illustrates how
well the error estimation and the adaptive strategy perform in practice.

2. Notation and the Model Problem. Let JC be a separable Hilbert space with
inner product {(u, v> and norm |ju|| = {u, u>"/2

A denotes a (possibly unbounded) selfadjoint linear operator in JC with domain
of definition 9 (4).

Furthermore, we assume that A is a strictly positive-definite operator, i.e., there
exists C > 0 such that

Vu€ D(A): Cllul? < {Au, u).

Let M be a selfadjoint bounded linear operator in JC. M is also assumed to be a
strictly positive-definite operator.

D (A'7?) is itself a Hilbert space with inner product {u, v> + (A%, A'/%>.
The same is true about D (M ~'4)¥) for any integer k > 0.

I denotes an interval on the real line. L%(I; IC) is defined as the set of strongly
measurable functions u: I — I such that ||u(-)|| is an element of L%(1); cf. [4]. The
same goes for L2(1; D(A'/?)) and L¥(I; D (M ~'A)¥)).

We also need Sobolev spaces of functions with values in IC, D(4'/?) and
DM ~'4)*). H'(I; IC) denotes the space of functions u: I — IC such that u(-) €
LXI;9) and (d/dv)u(-) € LXI;IC); cf. [2]. The spaces for D(4'/?) and
D((M ~'4)¥) are defined similarly. The derivative is taken in the distributional
sense.
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H'(I) denotes the standard Sobolev space on 1.
Assume a and b are real valued functions in L*([-1, 1]) such that

ay < a(y), by <b(y)
for some constants a, > 0, b, > 0. a, and b, € L=(-h, h)]) are then defined as

a,(y) = a(y/h), b(y)=b(y/h).
By P,(d/dy) we denote the differential operator —(d/dy)(a,d/dy). Let f and g be
two arbitrary vectors from JC. We consider the following model problem

P,,(%)Mu" + b,Au* =0 in ]-h, h[,
d o n
(D a,,E Mu" =g fory = h,

h=f fory = —h.

_ ah—% Mu
The precise formulation of (1) is
u" € H'([-h, h]; IC) 0 LY([~h, h]; D(4'7?)),

&) By(u*, 0) = (g o(h)) — {f, o(-h)),
Vo € HY([~h h];90) 0 L[, K] D(4'),

where %, denotes the bilinear form

B,(u, v) = f < 1/2d Ml/z;; >dy+f b,( AV, AV %) dy.
For more details, see [6]. In that paper we introduced the notion of dimensionally
reduced solutions to (1). Let {y;};2, C H (-1, 1]) be a given sequence of linearly
independent functions (referred to as basis functions).
Definition. The dimensionally reduced solution u: of order N is the projection of
u” onto the space

= { gog(y/h)%l% € D(4'?), j=0,... ,N}.

The projection is with respect to the inner product %, (u, v).
We proved that in order to obtain optimal rate error estimates for # — 0 there is
essentially only one choice for the sequence {y;,};2,. This is related to the operator

P = b~\(d/dy)(ad/dy).

THEOREM. There exists a sequence of linearly independent functions {¥ 3 J=0 With
(@) TU(P) = span{y, )2 i > 1,
that has the following property:
(i) For any integer N > O and for any given set of vectors f, g € D(AM ~HY)
there exists a constant Cy (independent of h) such that

" — upnll e < Cyh*N+172,

9U(P’) here denotes the nullspace of P’, and ||| - ||| ; is the energy-norm associa-
ted with the bilinear form %,. This is slightly different from the formulation in [6],
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where we used the norm

2 1/2
([ g u] &+ [ hamor )

It is obvious though, that these two norms are equivalent with constants indepen-
dent of 4. For more details concerning this theorem and its converse we refer to [6].
It is now convenient to introduce

Definition. Any sequence {y;};Z, that has the two properties listed in the
previous theorem is said to be an optimal sequence of basis functions.

It follows immediately from Theorem 4.1 of [6] that any two optimal sequences
of basis functions {¢,}72, and {y;}72, satisfy

span{(pj}j]io = span{\pj}lio VN >0
We shall often use this fact without explicitly mentioning so.

In the present paper we need a slightly different but weaker version of the result
contained in Theorem 4.1 of [6].

LeMMA 2.1. Let {{;}72, be an optimal sequence of basis functions, and let N be an
integer > 0.

For any nontrivial set of vectors f, g € I, there exists a constant Cy, (independent
of h) such that

CyhN* V2 < lju” — ulylll g
for h sufficiently small.

Proof. The proof is by contradiction, i.e., we assume

llu — ufyll g = o(R2N*+1/2)

for some sequence A;, with A, — 0 as i — co.
If f and g are linearly independent, Theorem 4.1 of [6] then gives that

span( 12 }JZZ; ¢ span { 4’;},2:, o

and this is obviously a contradiction.

We therefore only have to consider the case when f and g are linearly dependent,
say f = a- g, g # 0. As in the proof of Theorem 4.1 of [6] it now follows that

d d d
3) _5"/?’-“ - azy_‘l"}\wl € Span{;‘l’j}j_o,
where y° and v are as introduced in Lemma 3.1 of [6]. Since
2N

el o)l 4]

and
b '—a—y/=y', =01,

(3) immediately leads to the conclusion

Yf — o) € span{yg, yg ).
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Because of the fact that Y3 and y; are both constant, we get
d d
4 —yd —a—yl =0.
( ) @ lI’l dy tPl
But, according to [6], 2 and ¢| satisfy
d o d
a—{i(1) =1, a—¢;(1) =0,

so (4) is obviously a contradiction. []

For the analysis in this paper we also need two simple regularity results, one
concerning the true solution #* and one concerning the dimensionally reduced
solutions uy.

LeMMA 2.2. Let u” denote the solution to (2). If for some integer k > 0, f, g €
D (AM ~1Y), then

ut € H'([~h, h]; D((M~'4)")) 0 LH[~h, h]; D(4V(M ~14)")).

Proof. Let @i* denote the solution to (2) in the case where f and g have been
replaced by (AM ~)*f and (4M ~')*g, respectively, i.e.,

B, (15", v) = ((AM~")'g, (k) — ((AM ™), v(-h))
Vo € H'([-h h]; ) N L([-h, h]; D(4'/?).
We then get that
Bu((4 M) %, v) = By (", (47 M) ) = ((AM ~)*g, (4~ M) v(h))
~((AM =YY, (47'M)* o(-h))
= (g, v(h)) — {f, o(-h))
Vo€ H'([-h, h];3C) 0 L([-h, h]; D(4'/?)),

and hence (4 ~'M)%i* = u”. Since ii* € H'([-h, h); IC) N L¥[~h, h); D(4'/?),
the desired result now immediately follows. []

The regularity result we need for the dimensionally reduced solutions u is the
following.

LemMa 23. Let uh =3 i=0 ¥;(¥/ h)x; denote a dimensionally reduced solution of
order N. If, for some integer k > 0, f, g € D((AM ~)), then

x, € D((MA)**") Vj:0<j<N.

Proof. Let x € IM*! denote the vector (xg, . . ., xy). It is clear that x is the
solution to

h(CA'?x, 4'%y) + h~ (DM, M'/%y) = (r,yy Vye[DAH]",
where C = {¢;}Y;_o, D = (d;}} ;-0 and r = {r,}}_, are given by
1 1(d d
i = f_l\bi(y)‘»bj(Y) dy, dij = f_l(‘Jy"Pz)(E\bj) @,

and r; = Y(1)g — Y(-1)f, respectively. (We have here used < -, - ) also to denote
the inner product ZV_(x;, y;> in IV+1)
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Due to the fact that 4 is selfadjoint and M bounded, we get that x € [5D (4)]V*!
and

hCAx + h"'DMx =r, ie, Ax=h"'C 'r — h~2C"'DMx.

By successive application of this equality it follows that r € [ (4M ~H)PV+!
implies x € [D((M ~'4)**H}Y*+1. This finishes the proof of the lemma. []

3. A Posteriori Error Estimation in the General Case. As already mentioned in the
introduction, one purpose of this paper is to derive a reliable technique for a
posteriori estimation of the error introduced by dimensional reduction. The error
here is measured in the energy-norm. The key ingredient of this technique is a
so-called estimator Est, which we now proceed to define.

Let e € H'([—h, h]; 3C) be the solution to

(;)Me‘ (;y)MuN byAuf in |-, h[,

(5) a,— dy Me =g—a— abf MuN fory = h,

Me=f Mu, fory = —h.

ah@ —ahdy

The exact meaning of (5) is
e € H'([-h, h];%) and

S Mo M2 o) &y = (g, o)) — o)
(6) h d d A
—f_hah<Ml/ZEu,’,}, M‘/250> & — f_hb,,<Au,{',, oy dy

_Vv e H'([—h, h]; 3C).

In Eqgs. (5) and (6) we have used the fact that u/:(y) € D (A), which immediately
follows from Lemma 2.3 with k = 0.

Since (6) is a Neuman problem for &, it only has a solution provided
(& x> = fxy = [ blAul xy dy =0 Vxe XK.
—h

Because of the equations defining u,C, it follows that this is true if

) 1 € span{y;}"

Note. According to Theorems 3.1 and 4.1 of [6], condition (7) is in general
necessary and always sufficient to ensure that

llu* — ul||z =0 for h—0.

Certainly (7) is satisfied for any optimal sequence of basis functions.
We now define
2 \1/2
») "

@) Est = ( f_ha,,

d
Ml/2
dy
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The function & is clearly not uniquely determined, but, since only de/dy is
involved, Est is well-defined. We shall now show that the estimator Est exhibits
some very attractive properties.

THEOREM 3.1. Let u* be the solution to (2) and u}t a dimensionally reduced solution
of order N > 0 corresponding to a sequence of basis functions that satisfies (7). If Est
is as defined in (8), then

lllu* — uglll g < Est.
Note. In the terminology of [1] this theorem says that Est is a ‘guaranteed’ upper

estimator.
Proof. Clearly

llu" = uylllx = sup|B,(u" — uy, )|/ lloll .
where the sup is taken over v € H'([-h, h); ) N L%([-h, h); D(A4'/?)). According
to the definition of &, this is nothing but

sup

[ (ML M) dy|/n|vn|E,

and, using Schwarz’s inequality, we now get

h d
O R Y T
I

For use of the estimator Est in actual computations, it is important that it is very
close to the real error in a wide class of situations. In the terminology of [1] this is
expressed by the requirement that Est be asymptotically exact. The following
theorem contains a precise formulation of the asymptotical exactness for the
estimator Est. It is essential here that the dimensional reduction is based on an
optimal sequence of basis functions.

2 1/2
aﬁ/) = Est. O

THEOREM 3.2. Let {y,}%2, be an optimal sequence of basis functions. Let u” be the
solution to (2) and u}. be the dimensionally reduced solution of order N > 0. Assume
furthermore that f and g are elements of D ((AM ~")V+D/2A+1y

If Est is as defined in (8), then

Est = [||u” — uf|| (1 + O(h?)).

Note. Here [ -] denotes the integer part.
Proof. Since f, g € D(AM "), it follows from Lemma 2.3 and (5) that ¢ in this
case can be selected so thate € H'([—A, h]; D(A)). We now have
2 \1/2
3)

M'/zie

Est =|f_hhah<M‘/2% €, M‘/Z%e> aﬁ/l/ (f_hha,, Y

< (sup f_hha;.<M‘/2%e, M‘/%o) dy'/mva)
: (|ne|||E/( [ e zdy)m),
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where the sup is taken over
v € H'([-h, h]; IC) n L[k, k]; D(4/?).
As shown in the proof of Theorem 3.1, this last expression is equal to
h 2 1/2
ll* = wfll - el =/ ( [ a dy) :
—h
The theorem will therefore be proven if we show that & can be chosen such that
h 2
) [ b4l & < Cyh f ol .
—h

It is clear that, by appropriately selecting the undetermined constant of ¢, we can
obtain

M'/ZZ‘;—S

d
MI/2
g

2
dy

2
-Chf <dy dyAe>dy.
Now from (6), the definition of &, we have
h 124 124 1
[l ge) &= [ a( Mg e wrgme) &
= (& M~'4e(h)) — {f, M ~'de(-h))

_f <MI/2 d ,Ml/2%M_1A8> ‘b"

- f b, Ault, M~'4e) dy,
—h
and by introduction of u” this is, because of Lemma 2.3, equal to
By (M ~'Au* — ul), €).
By an application of Schwarz’s inequality, this expression can be bounded by

M A" = ug)lile - el g
From the fact that A4 is strictly positive-definite together with (10), it follows that

el < <+ ) [ a2 aaf &),

=4 1/ 2
and, since we only need to consider small 4, this now gives

dy
fhh“h dy = %h(M IA(“ _“N) '5)

f bl &y < O [ ha,,”—iA'/ze

(10)

—14(,,h A h d \p 2\
< C||M~'A(u* - uN)||{E(f_ha,, 47 dy) .
By insertion in (10) we conclude that
h
(11) [ Bl a2l dy < CRIM A (" = )R
—h

For the rest of this proof let us assume that N is even (the procedure for N odd is
quite similar, only there are slight variations of Lemma 2.1 and Theorem 3.1 of [6]
needed in this case).
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It follows immediately from the proofs of Lemmas 2.2 and 2.3 that M ~'4u”* and
M ~'Aul are solutions to the same problems as u* and uf just with f and g
replaced by AM ~!f and AM ~'g. Because of Theorem 3.1 in [6] and the assumption
that f, g € D((AM ~HV/2+1), we get

1M~ A(u" — uf)lle < CyhV*172,
and this combined with (11) immediately leads to
h
f bh”Al/ZGIIZ‘b) < CNh2N+3.
—h

On the other side from Lemma 2.1 it follows that
CyPN 1 <l = ufli
From the definition of Est and Theorem 3.1 of this paper, we therefore get
2
dy,

IN+1 h 2.4
Cyh < f_ha,, M dye

that is, we have finally proven

2
M'/Z%e

~h h
[ bl & < ey [ a, & O
—h —h

Since the estimator Est is to be used in actual computation, it is of the utmost
importance that it can be calculated very simply. The equations (6) and (8) that
include the solution of an O.D.E. are therefore not well suited as a formula for the
calculation of Est. In the following we shall show how easily Est can be calculated
by means of different formulae. For these formulae to be valid it is essential not
only that the dimensional reduction is based on an optimal sequence of basis
functions but also that this sequence satisfies a special orthogonality condition.

Let {y;};2, denote an optimal sequence of basis functions which is orthogonal in
the semi-inner-product (', ad/dy-d/dy - dy. (y; is clearly uniquely determined
modulo a constant and a scalar.)

We define a sequence {¢;};2, by

1 -1 r1
$i) = 00) = ([ b at) - [ by a
&(») = 4(») — %(-1) forj > 2.
(¢, > 1, are therefore uniquely determined modulo a scalar.)

LemMA 3.1. Let {¢,;};2, be a sequence as defined above. Let uy = 2N, 0,(y/h)x;
denote the corresponding dimensionally reduced solution of order N. If € is as defined
in (6), then there exist constants {c;} - and {C;} 5o Such that

d

il (%¢l)(y/h)M“(co(f+ 8 + &(f - 8))

+ (%(ﬁz)(y/h)hM"Ac,xo for N=0
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o= (§¢N+.)(y/h)hM-'A(chN_l ¥ yxy)

d
+ (5¢N+2)(y/h)hM_IACN+IxN Jor N > 1.

Proof. Since {¢;};2, is an optimal sequence of basis functions, it follows
immediately that
N+2

e= 3 o0/h)g

forsomeeje‘JC,O<j < N + 2, 1.e.,

d _ N+2 . —4—

Forany 1 < j < N and x € 9 (4'/?),

Mej,x>f_’la(§¢,-) = (M, MV axyn [ a,,( [@(y/h)])
-f"a <M'/2—e M'/2%[¢j(y/h)x]> &,

where the last equality is due to the fact that {¢;};i, is orthogonal in the
semi-inner-product [' |, ad/dy - d/dy - dy. Now from (6) we get that the last expres-
sion is equal to h®,(u* — uy, ¢(y/h)x), and this vanishes because uy is defined
as a projection. We have therefore proven that

(Mg, x)=0 V1<,j<N,x€N4'?,
or
(12) =0 VI<,j<N.
Forj = N + 1 we get as before

Mo > [ o Sver) @

d d
=h f < M7 EeM [¢N+1(y/h)x]>
and this is, according to (6), equal to
h
h{ g, on1()x) — h{f, ¢N+|(‘1)x> - hf_hbh<A“1’\'rs 4’N+1(J’/h)x> dy.

In this identity we also used the orthogonality of the ¢’s. Concerning the last term

h N 1

B b Auls wa0/W)x) = 1 3 (%) [ OIS0 Wi (3) &
-_— j- -

This vanishes for N = 0, because [, b(y)p,(¥)dy = 0, and therefore establishes
the formula for ¢, , in the particular case N = 0.
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In the following we are left to consider N > 1. Let j be any integer 0 < j <
N — 1. Then

j+2
(13) f b(y)(¥)on+1(¥) & = f (2“.4’;’()’))4’1\'“()’) &,

where the o;’s are selected such that P(E’,:(z, ap) = ¢,
This is possible because {¢;}72, is an optimal sequence of basis functions.
Since N > 1and (7, ds/a(s) € 9U(P), we also have that

on+1(1) — dni(-1) =f_llaz‘d)‘(fyl a(ls) ) Ons1dy = 0.

We already know that ¢, ,(-1) = 0, i.e., we conclude

(14) on+1(1) = oy y(-1) = 0.
It follows immediately from an integration by parts in (13) and application of (14)
that for any integer 0 < j < N — 1

Jj+2

J P08 0M) b = S o[ aly) St ovd =0

The last identity is due to the orthogonality of {¢}72, and the fact thati <N + 1.
In summary we have therefore proven

2
Moy i) [ al Zeowar) & = -h[" bCul s 0/ 1))

(here again we used (14))

= —h2(<AxN—p x>f_llb¢1v— 1Dve1 & + {Axy, x>f_llb4>~¢~+1 a)’),

that is,
(15) ene1 = BM ~A(cyxy_; + Eyxy)s

with the explicit expressions for ¢, and ¢y as given above.
Along exactly the same lines we also get

Eny2 = th—lAcN+1xN’
and therefore the desired result for the function de/dy. []
Lemma 3.1 immediately leads to

THEOREM 3.3. Let {¢;}72, be a sequence with properties as in the previous lemma.
Let uft = 3V =0 (¥ / h)x; denote the corresponding dimensionally reduced solution of
order N. If Est is as defined in (8), then there exist constants {C,} o and {Ck}k,g,0
such that

Est = B>/%(|| M ~'2(Co(f + 8) + Co(f — @))IPh ™% + | M ~1/24C x| )
Jor N =0

1/2

and

Est = B¥/(|M ~2A(Cyxy_; + Cyxy)I? + |M ~V2ACy, 1 xy|?)"> for N > 1.
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From the formulae contained in the proof of Lemma 3.1 it follows that the
constants {c,, & }7_o and {C,, C,)%_ respectively, are readily computable based
on the sequence {¢;}72,. The following example gives the exact values in the case
of constant coefficients a and b.

Example 3.1. If the functions a and b are both constant, it immediately follows
that every optimal sequence of basis functions {y;};Z satisfies

span{xpj};v_o = all polynomials of degree < N

for any N > 0, and vice versa.
The specific optimal sequence of basis functions {¢;};2¢ used in Lemma 3.1 and
Theorem 3.3 is now (modulo a scalar)

Po=1 o(»)=y,
y 3
90 = [ b, j>2,
where , denotes the Legendre polynomial of degree k (normalized so that

SL LX) dr = 2/(2k + 1)).
Because of the alternating even and odd polynomials, it immediately follows that

&=C,=0 Vk>0.
Simple algebraic manipulations with the Legendre polynomials now give
co=1/2a, ¢,=b/a
and
¢ = b/ ((2k — 1)2k — 3)a) fork > 2.
From the definition of C, it immediately follows that

2 1/2
(1 g o) e
i.e.,
=[1/2a]'? ¢, =[2b%/3a]"?,
and
=[26%/ ((2k + 1)k — 1)’k — 3)%a)]"* fork > 2.

We shall now show how one can derive another set of formulae for the a
posteriori error estimator. As it will turn out these formulae are much better suited
for practical applications. For the case N = 0 it is clear that Ax, = Ch~!(f — g).
In the following we therefore only consider N > 1.

LEMMA 3.2. Let {C)%o, {Co) oo and ult = S ¢y /h)x; be as in the previous
theorem. Then there exist constants D, 1 < i,j < 2 such that

A(Cyxy_, + C~'1s/)‘1\') = h_lD):’IM(g - a4 & M“N(h))

+h_'D,¢2M(f - a"aj) Mul(- h))
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and

ACy Xy = h_lDzsl(g - aha), MuN(h))
+h"DA2,2(f— a,,ayMuN( h)) for N > 1.

Proof. From (5) and Lemma 3.1 it follows that
d d

(16) —Ph( ‘;’ )MuN — byduy = — (;3,' a),¢~+1)()’/h)A(chN )
- (%05¢N+2)(Y/h)AcN+,xN.

If we integrate the right-hand side of (6) by parts, set v = ¢(y/h) - x, and apply
the identity (16), the result is

hdy'A(cyxy_y + Eyxy) + hdpfdcy \xy =g — f — M“N"'

with ‘
d
1 _ 12 _ 4
dy flajz dy¢N+,dy and dy flayaay%,“ay.
Performing the similar procedure with v = ¢,(y/h) - x, instead we get

hd¥A(cyxy_, + éyxy) + hdPAcy Xy

= 0i(1)( & = @y M) — (- 1)( — e M)

with
a3 = f ¢~+1¢. & and dF = f ¢N+2¢1 b.
The lemma therefore 1mmed1ate1y follows if the matrix
= {d,:'f,’ }?.j=1

is always invertible. The proof of the invertibility follows by contradiction. Assume
dy is not invertible for some N. This implies that some nontrivial linear combina-
tion of the columns of dy vanishes. In terms of the functions ¢y, and ¢, , this
says that some nontrivial linear combination s;¢5 ., + $,¢ ., €Xists such that

d
(17) fll & (b,(S1¢N+l + Son)vdy =0

for v = ¢, and v = ¢,. By performing an integration by parts we easily see that this
identity must also hold for v = ¢, 2 < j < N. Since the sequence {¢;}72, is an
optimal sequence of basis functions, we know that

d
a), (SI¢N+1 + 5,0n42) = b 2 ad;

Jj=0
for some set of constants {aj} =0 Combining this with (17) we conclude that

d d
Eagy-(smm + $,0n42) = 0.
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Due to the fact that s;¢5 . (¥) + 5305 .2(y) = 0fory = =1, this implies

S1On+1 + S2Pn42 =0,

which obviously contradicts the fact that this is a nontrivial linear combination.
O

The difference between the formulae given in Theorem 3.3 and those that are
based on Lemma 3.2 is that while the first include elements of the form Ax; the
latter are expressed solely in terms of f, g and the x;’s. In practical applications we
seldom know the exact values of the x;’s. Instead we compute some approximate
values X, e.g. using a finite element method. The error introduced by using
approximate values, derived from finite elements, in the expressions of Lemma 3.2
can be neglected. The reason is that the difference between x; and X; in the 3
norm (viz. L?) is normally very small. The problem with the expressions of
Theorem 3.3 in this context is that in general A%; is not at all defined.

As before we now give the values of the constants DJ in the case where a and b
are both constants.

Example 3.2. Assume a and b are constants. In this case we already know that
Cy = 0. Lemma 3.2 therefore reduces to formulae for ACyxy_, and ACy, Xx,
N > 1. Itis easily seen that these are

ACyxy_, = h~'(2a(2N + 1))_1/2[(g - ah% Mu,{}(h))

+ (s ast Mu,c(—h))]
ACy 1 xy = h™'(2a(2N + 3))_'/2[(g - a,,% Mu,(',(h))
GO FEr Muﬁ(—h))]

for N > 1.

4. Improved Error Estimation—A Specific Example. As mentioned before it is very
important that we are able to estimate the error accurately. Theorem 3.2 shows that
our estimator Est does exactly that provided the data is sufficiently regular and A is
not too large. In this section we shall address the problem of how to detect if the
estimator Est is too conservative, due to singularities in the data or large h, and
what can be done to correct it. For simplicity we consider the model problem

[(%)2 + (aiy)z}u" =0 inQ" =10, 1] x]-h &[,

h
du? _ fory = h,
ay
h
du” = fory = -h,
dy

ulh=0 forx =0, 1,

where g is an element of L%([0, 1]).
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Let {¢;};2, be the sequence of polynomials introduced in Example 3.1. The
dimensionally reduced solution of order N, u,f}, has the form

N
un(x,y) = 2095,0/ h)v,(x),
j=

where v; € H (0, 1]), 0 < j < N. Let ey, denote the exact error, i.e., ey = uh — u,(}.
Since everything is even in y, all the terms in the dimensionally reduced solutions
corresponding to odd indices vanish. From here on we only consider dimensionally
reduced solutions of even order 2N. Let us start by giving a table that shows the
relative error (= |||e,nlll £/ lll*|ll £) and the efficiency index of the estimator Est
(Eff = |||e,nll g/Est) in the case g(x) = = /4, for N = 0 and N = 1, respectively,
and for different values of A.

TaBLE 4.1
N=0: N=1:
ﬁ Rel.Error ﬂ h Rel.Error EE_
1/2 0.67 0.88 1/2 0.121 0.69
1/4 0.43 0.94 1/4 0.051 0.68
1/8 0.24 0.97 1/8 0.019 0.68
1/16 0.12 0.99 1/16 0.007 0.68
1/32 0.06 0.99 1/32 0.002 0.68

From the table it is evident that the efficiency index approaches 1, as A — 0, for
N = 0, but that this is not so for N = 1. The numbers therefore clearly show that
some smoothness condition, as in Theorem 3.2, is essential in order to ensure that
this index converges to 1 for A — 0. For most practical applications though, an
efficiency index of 0.7 is completely satisfactory and no corrections to Est are
needed. It is also important to note that » = 1/2 corresponds to a square and that
Est still gives a very reliable estimate for the error. The next table lists the
efficiency index, also in the case where g(x) = /4, but for N = 2 and 3, and three
different values of A.

By a comparison of Tables 4.1 and 4.2, it is seen that the efficiency significantly
decreases as we include more and more polynomials.

TABLE 4.2
N=2: N =3:
h Rel.Error Eff. h Rel.Error Eff.
1—/2 0.045 0.53 1/2 0.022 0.43
1/4 0.019 0.52 1/4 0.008 0.38
1/8 0.008 0.55 1/8 0.003 041

In the following we shall take a closer look at the derivation of the estimator Est
for the purpose of suggesting corrections that can increase the efficiency to any
desired level. We shall only work out the details of a first correction.
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The exact error e, is the solution to the boundary value problem

9 \2 9 \? .
(8 +(3)]pmr oo

de.
% =pw  fory=h,
de
G;N =-p,y fory = -h,
e,n =0 forx =0, 1,
with
9 \? 3 )\?
rav = —[(‘a;) + (5)—)) ]ué’N(x,y)
and

0
pav = 8(x) = 55 uly(x, B).

In terms of complementary energy the norm of e,y, |||le,x|l[g, can now be char-
acterized by

leawlls = min [* [* (%(x,2) + £(x,3) & d,

5,0) EIMN
where
(s, ) € O if and only if (s, 1) € (LH(Q"))’,
] d
'5;5 + a—yt = Iyny
t=p,y fory=h and = -p,y fory =-h.
If we define ¢y by
a_yto =r lo=pyy fory=nh
then

to=—pyy fory =-h,
and it is clear that (0, 75) € 9IL. On the other hand, it is also clear that Est =
(s 2, t&(x, y) dy dx)'/?, i.e., Est is simply a particular value of a functional, the
minimal value of which is the exact norm of the error. One way to improve the
estimator Est is therefore to take the minimum over more than just the single
function #,,. This should not be exaggerated since we also have to keep the formulae
simple. Define

s09) = [ (rante.) = Fa@) 5 €)oo/ )

and

t(x,y) = hryn(x)8(y /b)),
where 7, (x) denotes the function

() = 55 [ r(x,9) &,
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and ¢ is an arbitrary element of H'([-1, 1]). It is obvious that
9 (]

—s+——1=ry.

ax dy
If furthermore { satisfies {(1) = 1, {(-1) = -1, it also follows that
t=p,y fory=h and t=-p,, fory =-h.
From Lemma 3.1 we get the identity

ron(3) = ( 25 o) 0/ B)- (),

where /,y,, as before denotes the Legendre polynomial of degree 2N + 1, so it
immediately follows that

(./(;1 f—hh(s2(x’y) + tz(x’y)) dy dx)

- (P[00 [t

w4 —l 1(%('2”“(” - f(y)))2 @fol(foxfw)z dx)l/2

It should be noticed that the estimator Est is obtained from this with the choice
$(») = Ly +1(»). If we define

A =# [ (Fan (%)) dix

and

B(h) = h fo '( fo xsz)z dx,

then the previous expression can be written as

2 1/2
(18) ( [ £0) i) + [ (5 v - 100) ayB(h)) .

It is easy to see that the minimum of this expression over { approaches

(f_lllzzNH(Y) dyA(h))l/2 = Est

as A(h)/ B(h) — 0. In the case that A(h)/ B(h) — o0, the minimum of the expres-
sion (18) approaches
(44(R)B(h))'/*.
Based on these asymptotics we introduce a new estimator Est, by
_ | Est if A(h)/B(h) <,
" 44(R)B(R)* if A(h)/B(h) >,
where 7 is some specified constant. The quantity A(h)/ B(h) will therefore tell us
whether we shall use the value of the old estimator Est or not. Since we know that

hryp(x) = pyn(x), A(h) and B(h) can very easily be expressed in terms of p,y. It
follows from this that A4(k)/ B(h) is small exactly if 4 is small and p,,, is sufficiently
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smooth. Since the smoothness of p,, may sharply vary on the interval [0, 1], we get
that the estimator Est may well give a good estimation of the error in parts of [0, 1]
but not in others. We therefore divide the interval [0, 1] into K disjoint subintervals
I, 1 < j < K, and define

X 1/2
Est, = ( S Estl(zjf) ,

Jj=1

where Est,(;) refers to the estimator Est; computed on the interval . The
following table shows the efficiency index of the estimator Est, (Eff, =
llleanlll £/ Est,) in the case g(x) = = /4 for N = 2, 3 and three different values of A.
The interval [0, 1] was divided into eight subintervals of equal length, i.e. K = 8,
and the constant 7 in the definition of Est, was chosen to be 10,

Although the efficiency index is not quite 1, Table 4.3 shows a definite improve-
ment over Table 4.2. Again note that the efficiency is almost independent of A. If
additional accuracy of the estimator is deemed necessary, this can obviously be
obtained by an extension of the technique used to derive Est,, Whether such
additional corrections are worthwhile in the end of course depends on the balance
between the cost of computing the estimator and what is computationally to be
gained from a more accurate estimator.

TABLE 4.3
N =2: N=3:
h Rel.Error Eff, h Rel.Error Eff,
1/2 0.045 062 1/2 0.022 0.60
1/4 0.019 0.59 1/4 0.008 0.53
1/8 0.008 0.62 1/8 0.003 0.56

5. Some Remarks on an Adaptive Strategy. As already mentioned in the introduc-
tion, the goal of this paper is not only to derive reliable estimates for the error, but
also to use these estimates as tools in an automatic selection of the right order
dimensionally reduced solution for a given problem.

First let us introduce a slight generalization of the concept of dimensionally
reduced solution. Instead of projecting onto the space {2;’_0 Y(y/h)x|x; €
D(A'7?,j=0,...,N}, we project onto (=, ¥(y/mxlx; € K, j =
0,..., N}, where {3;}",is a family of closed subspaces of D (4'/?).

To see the importance of this generalization and describe the ideas behind the
self-adaptive strategy, we shall consider the case that A4 is a differential operator on
some domain Q. Let © be divided into k disjoint subdomains 2, 1 < i < k, and let
N,, 1 <i <k, be k nonnegative integers. Set ¥, = {u € D(4'/?)|u(x) =0 for
x € Uy ; %}, the extended concept of dimensionally reduced solutions with this
family {K;}/_, N = max,{N,}, is one that permits different order of the dimen-
sionally reduced solution in different parts of the domain Q. This is extremely
important for practical applications, where a low order dimensionally reduced
solution may very well be satisfactory in the interior of the domain and away from
singularities in the loads and at the same time a high order solution is required near
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the boundary or near singularities. As a total estimator for the error, let us use an
expression of the form

k 1/2
(19) ( s [n,-(N,)]’) ,

i=1

where 7,(N,) refers to some estimator on the domain £, with respect to dimensional
reduction of order N,. (n; could for example be the estimator Est or the corrected
estimator Est, of the previous section.)

To set a goal for the ‘best’ distribution of the orders { N,}%_, for a dimensionally
reduced solution we need the concept of cost. Let us assume that the cost of
(solving) the dimensionally reduced problem with orders {N,}*_, is given by
Tk_(BN; + 1)*’m(Q,), where a and B are two positive constants and m(%2,) is some
measure of ;.

As a ‘best’ distribution of the orders for a dimensionally reduced solution we
define one which for a given cost minimizes the energy norm of the error. (We
could also have defined a ‘best’ distribution as one that for a given value of the
energy norm of the error minimizes the cost. Which of these two definitions we
take makes no difference in the strategy we propose.)

The following is very heuristic in nature and by no means an exact verification
that the strategy works. Let us use the expression (19) as if it were the exact norm
of the error. Secondly, let us assume this expression to be defined for all positive
values of the N,’s, and not only integers. By introduction of Lagrangean multipliers
it is easily seen that a ‘best’ distribution of the N,’s has to satisfy

(a/aNi)([ni(Ni)]z)
(BN, + 1)*"'m(Q)

In practice we only have the values of the 7,’s at integer points and a discrete
equivalent of (20) is then

[m(N; + D]* —[n(N)]
(BN, + 1) 'm(Q;)

We shall also assume that m;(N; + 1) is significantly smaller than 7,(¥N,), so that
instead of (21) we get

(20) 3C (independent of i) such that

~C, Vi

2
1) ~C, Vi

[ "Ii(Ni) ]2 -
(BN, + 1)*"'m(Q)

The strategy we propose is one that aims at equilibrating the left-hand sides of
(22). We do this in a way similar to the adaptive finite element solver F.E.A.R.S.;
cf. [1]. Let us assume that we have arrived at a distribution {N}%_, and that the
estimate for the error is unacceptably large. Our strategy is simply to find j such
that

(22) C, Vi

[n(NO]

T (BN + 1) (@)

is maximal, and then increase AC.O by 1. In the next section we shall see how well
this performs in a practical example.
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6. A Numerical Example. Consider the same problem as in Section 4, namely

[EREE

in @ =10, 1[ X ]-h, A[,

h

aaLy=g fory = h,
h

aa—l;—=—g fory = —h,
u"=0 forx=0,1.

Let [0, 1] be divided into the four subintervals I, = [(i — 1)/4,i/4), 1 <i < 4. A
dimensionally reduced solution can now have different order in the different
intervals [, 1 < i < 4. As basis functions we choose the polynomials introduced in
Example 3.1.

TABLE 6.1
0 2 4 6
2N,
N,
0.3974 | 0.3257 | 0.3168 | 0.3160
o — —— — ——
1 4.5 14 32.5
0.3662 | 0.0730 | 0.0721 | 0.0720
2
- - - - error
4.5 8 17.5 36 -
0.3517 | 0.0383 | 0.0270 | 0.0270 work
4 — —— ——
h=1¥%
14 17.5 27 45.5
0.3499 | 0.0292 | 0.0134 | 0.0134
6 — — —— ——
32.5 36 45.5 64
2N 0 2 4 6
)
0.3014] 0.2296 | 0.2270 | 0.2267
0 —_ —_ - -
1 4.5 14 32.5
0.2540| 0.0359 | 0.0359 | 0.0359
2 p— — p— ——
4.5 8 17.5 36 error
0.2484| 0.0134( 0.0130[ 0.0130 -
4 — — — — work
14 17.5 27 45.5 b=k
0.2479] 0.0063| 0.0055]| 0.0055
6 - — - -
32.5 36 45.5 64
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The equations that define the dimensionally reduced solutions are solved by
introducing a finite element discretization in the x-direction. Piecewise linear
functions on a regular mesh are used as test and trial functions for the finite
element method. Since we want to illustrate the behavior of the dimensional
reduction, and are here not interested in any contribution from the x-discretization,
we choose a very fine grid of meshsize = 27°. The involved linear equations are
solved by a Cholesky decomposition combined with iterative refinement. In the
computations that we present here g(x) is chosen = = /4. Since this choice of
boundary data makes the problem symmetric in the line x =3 we only need
consider x in the interval [0, %]. Let 2N, 1 <i <2, denote the order of the
dimensionally reduced solution in .. The above table shows the error on the
whole interval [0, 1] (= [|le;xlllz) and the work (here defined by (N, + 1)
+ (N, + 1)) as a function of the pait N = 2N = (2N}, 2N,) for two different
values of A.

Based on the numbers in this table we can now find the entries with the property
that the error is smaller than any error obtained with the same or less work. These
entries are marked in the following table.

TABLE 6.2.

N 0 2 4 6

6 Y.
7

W
R/

o
]
R




382 M. VOGELIUS AND I. BABUSKA

Tables 6.1 and 6.2 clearly illustrate the advantage of a nonuniform distribution
of the polynomials. It is easy to see that the true solution #” in the limit as # — 0
has a parabolic behavior in the y direction, also for x in the middle of the interval
[0, 1]. This is reflected in the fact that the pair (0, 2) is slightly better than (2, 0), it
also explains the significant decrease in the error obtained by choosing the pair
(2, 2). For the higher order polynomials there is a clear tendency towards con-
centration near the boundary x = 0 (and x = 1) in the entries marked in Table 6.2.
This concentration is more visible the smaller 4 is; for h = % the pair (6, 2) is not as
good as (4, 4) but for & =} the error obtained by (6, 2) is less than half the error by
(4, 4) with only a slight increase in the work.

We now want to test the adaptive strategy outlined in Section 5 on this example.
We consider the case h =;, where nonuniformity in the distribution of the
polynomials is most advantageous. As an estimator we use Est, of Section 4, with
the constant 7 set to 10 and each interval / divided into 2 subintervals of length 3.
The following table shows the efficiency of Est, (Eff, = |||e,5|||z/Est,) as a
function of the pair 2N = (2N,, 2N,). It is evident from Table 6.3 that Est,
provides a reliable estimate for the error even in the case of variable order. We also
note that Est, is not necessarily an upper bound for the error, when the orders of
the polynomials are allowed to vary. Steps could be taken to correct this, but on
the other hand computational experience shows that this effect is insignificant, and
that Est, is very close to an upper bound in most cases.

TABLE 6.3
2N12N2 0 2 4 6
0 0.94 | 0.99 1.00 | 1.00
2 1.06 | 0.68 0.68 | 0.68 et
4 1.09 | 0.60 0.59 |0.59 h=14%
6 1.09 | 0.57 0.53 | 0.53

Let us start with an initial distribution for the orders of the polynomials given by
(2N, 2N,) = (0, 0).
Based on the present formula for the work and the error estimate, we now compute
8,,j = 1,2, as in Section 5. The result is
8, = §,=0.10.
We can therefore proceed to both (0, 2) and (2, 0). According to Table 6.1, (0, 2)

is only slightly better than (2, 0), so this apparent “failure” of our strategy is of very
little significance.
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For the pair (0, 2) we compute
8, =010, §,=0.14x1072
and for the pair (2, 0)
8, =031x107% ,=0.10.
In both of these two cases we are told to proceed to the distribution given by
2,2).
For this pair we get
8,=0.14x 1072 and &, =0.59 X 1078,
i.e., if we want higher accuracy with dimensional reduction, our strategy selects the
pair
4, 2).
In this case
8,=0.14x 1073 and §,=0.16 X 1075,

so that additional requirements to the accuracy will lead us to the distribution

(6, 2).
The path that our strategy goes through can schematically be represented as
0,2)
7 N
(0, 0) 2,2 - 42 - (62
N 7
(2,0)

and based on Tables 6.1 and 6.2 this is clearly seen to be a very good choice. The
strategy has been tried in a variety of other situations and has consistently been
very effective. It has also been tried with different measures for the work. Here it
should be noted that by changing the measure of the work we may entirely change
the “best” distributions for the polynomials, but the strategy detects that easily.

7. Conclusions. In the following we list some conclusions concerning the ap-
proach of dimensional reduction developed in a series of three papers ([6], [7], and
the present).

(a) It is common in engineering to distinguish between structures with large and
small thickness (see, e.g., [3]). The approach presented here entirely avoids this
somewhat artificial categorization.

(b) This approach gives, in an optimal and adaptive way, the advantages of
asymptotic expansion (when the thickness is small) and the effectivity of the
spectral or p-version methods (when the thickness is not small, or strong singular-
ities are present). It has been shown that these two requirements uniquely char-
acterize the approach.

(c) Reliable a posteriori error estimates can be obtained for this approach, and
they lead immediately to an effective adaptive strategy.

(d) The approach is numerically very robust and works well independent of the
thickness and the regularity of input data.
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(¢) The underlying mathematical theory and numerical experiments show the
direction for various generalizations. These shall be dealt with elsewhere.
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