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On a Dimensional Reduction Method. 
III. A Posteriori Error Estimation and an 

Adaptive Approach* 

By M. Vogelius and I. Babuska 

Abstact. This paper is the last in a series of three which analyze an adaptive approximate 
approach for solving (n + 1)-dimensional boundary value problems by replacing them with 
systems of equations in n-dimensional space. 

In this paper we show how to find reliable a posteriori estimates for the error and how 
these can also be used in the design of an adaptive strategy. Various numerical examples are 
contained in the paper. 

1. Introduction. In a recent paper, [6], we introduced the concept of dimen- 
sionally reduced solutions to an elliptic boundary value problem. These are 
obtained by projecting (in the energy) the true solution of the boundary value 
problem in the (n + 1)-dimensional domain X x [-h, h] onto spaces of the form 

N 

Vh = 2 wj(x)%pj(y/h)lwj arbitrary) 

where { 4ij} o is a given set of functions on [-1, 1], (x are coordinates on X and y 
ranges over [-h, h]). For some basic ideas behind this concept, see [6] and the 
introduction to [5]. In [6] the focus was on the right selection of the sj's. It was 
shown there that for a very wide class of problems the 4j/'s should be selected such 
that 

span { 2)-1 ( = 

where P is a second order ordinary differential operator intrinsic to the elliptic 
boundary value problem. 

In [7] we analyzed the convergence properties of such methods as the order, N, 
increases. 

The present paper, which is a direct continuation of the previous work, deals 
with the problem of reliable a posteriori error estimation. It also designs an 
adaptive algorithm for the selection of the right dimensionally reduced solution. As 
it follows from [6] and [7], a high number of basis functions 4j may be needed 
(depending on the desired accuracy) either if the thickness of the domain, h, is not 
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sufficiently small or there are singularities in the true solution to the boundary 
value problem. (Because of the corner in the domain such singularities are often 
present in the neighborhood of aw x {-h} and aw x {h}.) 

Since singularities are local phenomena, it is of the utmost practical importance 
to introduce dimensionally reduced solutions that permit N, the order, to vary 
throughout the domain w. This aspect, specifically the adaptive choice of the 
distribution for N, is also addressed here. 

We now give a short review of the contents of this paper. 
In Section 2 we give a precise formulation of the model problem (which is 

identical to that of [6]) and prove some auxiliary results. 
Section 3 is devoted to the construction of an estimator for the error. The main 

theoretical results in this section are Theorem 3.1 and Theorem 3.2, which show 
that the introduced estimator is an upper bound for the error but on the other hand 
is not too conservative (away from singularities and for reasonably small h). 
Numerical experiments verify this and furthermore indicate that even for relatively 
large h, or strong singularities, the estimator is of the same magnitude as the error. 
The problems of how to detect if the estimator is unacceptably conservative and 
how to improve it are addressed in Section 4. 

In Section 5 we extend the concept of dimensional reduction to include a 
possibly different number of basis functions, 4j, in different parts of the domain. 
We also design an adaptive strategy to select the right distribution for the number 
of basis functions. This strategy is based on our ability to give reliable estimates for 
the error much in the same way as the strategy used by the finite element solver 
F.E.A.R.S. to generate an 'optimal' grid; cf. [1]. 

Finally Section 6 (and also 4) contains a numerical example that illustrates how 
well the error estimation and the adaptive strategy perform in practice. 

2. Notation and the Model Problem. Let SC be a separable Hilbert space with 
inner product <u, v> and norm Ilull = <u, u>1/2. 

A denotes a (possibly unbounded) selfadjoint linear operator in SC with domain 
of definition 6D(A). 

Furthermore, we assume that A is a strictly positive-definite operator, i.e., there 
exists C > 0 such that 

V u E 6D(A): ClluII2 < <Au, u>. 

Let M be a selfadjoint bounded linear operator in 'C. M is also assumed to be a 
strictly positive-definite operator. 

6D (A 1/2) is itself a Hilbert space with inner product <u, v> + <A /2u, A "/2v>. 
The same is true about 6D ((M - lA)k) for any integer k > 0. 

I denotes an interval on the real line. L2(I; SC) is defined as the set of strongly 
measurable functions u: I SC-> 5 such that Il u )I)I is an element of L2(I); cf. [4]. The 
same goes for L2(I; 6D (A 1/2)) and L2(I; 6D ((M - lA)k)). 

We also need Sobolev spaces of functions with values in SC, lD (A 1/2) and 
6D ((M - lA)k). H '(I; SC) denotes the space of functions u: I ---SC such that u(-) E 
L2(I; S) and (d/dy)u(.) E L2(I; SC); cf. [2]. The spaces for 6D (A1/2) and 
6D ((M -lA)k) are defined similarly. The derivative is taken in the distributional 
sense. 
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H 1(I) denotes the standard Sobolev space on I. 
Assume a and b are real valued functions in L??([-1, 1]) such that 

aO K a(y), bo < b(y) 
for some constants ao > 0, bo > 0. ah and bh E L??([-h, h]) are then defined as 

ah(y) = a(y/h), bh(y) = b(y/h). 
By Ph(d/dy) we denote the differential operator -(d/dy)(ahd/dy). Letf and g be 

two arbitrary vectors from 'C. We consider the following model problem 

[Ph( d )MUh + bhAUh = 0 in ]-h, h[, 

(1) ah%d Mu = g fory = h, 

ah d Muh =f fory = -h. 

The precise formulation of (1) is 

uh E H'([-h, h]; SC)n L2([-h, h]; 6D (A1/2)), 
(2) [ h(U, v) = <g, v(h)> - <f, v(-h)>, 

V/ v (E H'Q -h, h ]; SC) n L2Q -h, h ]; lD (A 1/2)), 

where 6:3h denotes the bilinear form 

h(U, V) ah (M 1/2 dYu, M 1/2 v) a + bA'/2u, A'/2v> . 

For more details, see [6]. In that paper we introduced the notion of dimensionally 
reduced solutions to (1). Let _+j 0 C H ([-1, 1]) be a given sequence of linearly 
independent functions (referred to as basis functions). 

Definition. The dimensionally reduced solution uh of order N is the projection of 
u h onto the space 

N 

vh = 4 j1(ylh)xjlxj EE 6(A112), j = O, . . . , NJ 
j=O 

The projection is with respect to the inner product 61h(U, v). 
We proved that in order to obtain optimal rate error estimates for h -> 0 there is 

essentially only one choice for the sequence { 41j) o. This is related to the operator 
P = b'-(d/dy)(ad/dy). 

THEOREM. There exists a sequence of linearly independent functions { j})' , with 
(i) G,(Pi) = span{Ap1}j'2i, i > 1, 

that has the following property: 
(ii) For any integer N > 0 and for any given set of vectors f, g E 6D ((AM - 1)N) 

there exists a constant CN (independent of h) such that 

|||Uh - Uh <C h2N+1/. 2NIIIE~ 

9 (pi) here denotes the nullspace of P', and I II E is the energy-norm associa- 
ted with the bilinear form (h. This is slightly different from the formulation in [6], 
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where we used the norm 

( -h| U(Y)| dy + I 
|A1/()| ) 

It is obvious though, that these two norms are equivalent with constants indepen- 
dent of h. For more details concerning this theorem and its converse we refer to [6]. 
It is now convenient to introduce 

Definition. Any sequence {+fj}y r that has the two properties listed in the 
previous theorem is said to be an optimal sequence of basis functions. 

It follows immediately from Theorem 4.1 of [6] that any two optimal sequences 
of basis functions {k}% o and { 4j}% satisfy 

span{j}J=O = span{4iJj)O V N > 0. 

We shall often use this fact without explicitly mentioning so. 
In the present paper we need a slightly different but weaker version of the result 

contained in Theorem 4.1 of [6]. 

LEMMA 2.1. Let {4j}0% be an optimal sequence of basis functions, and let N be an 
integer > 0. 

For any nontrivial set of vectors f, g E SC, there exists a constant CN (independent 
of h) such that 

h N2+ 1/2 < lIlUh - Uh 1 
CNh 1u-u2NIIIE 

for h sufficiently small. 

Proof. The proof is by contradiction, i.e., we assume 

||| U'. - U2' |I||E = o(h 2+1/2) 

for some sequence hi, with hi - 0 as i - oo. 
If f and g are linearly independent, Theorem 4.1 of [6] then gives that 

span{(j}j.0+2 C span{ }J,O 

and this is obviously a contradiction. 
We therefore only have to consider the case when f and g are linearly dependent, 

say f = a * g, g =# 0. As in the proof of Theorem 4.1 of [6] it now follows that 

el ~ d fd 2N 
(3) dy -a _ spanV PA) 

where 4p, and {>l are as introduced in Lemma 3.1 of [6]. Since 

span } = span{ f 
I 

and 

b-l d a- d I;>l _ ll = 0, 1, 

(3) immediately leads to the conclusion 

i4 - a41 E span{4?, fo 
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Because of the fact that Q0 and 4io are both constant, we get 
(4) d a d = 

But, according to [6], 4? and 41 satisfy 

a4d 0(l) = 1, a4 t4(1) = 

so (4) is obviously a contradiction. EO 
For the analysis in this paper we also need two simple regularity results, one 

concerning the true solution uh and one concerning the dimensionally reduced 
solutions UN. 

LEMMA 2.2. Let uh denote the solution to (2). If for some integer k > 0, f, g E 

6D ((AM - )k), then 

uh E H ([ -h, h ]; 6D((M - lA)k)) n L 2([ -h, h ]; 6D (A 112(M - IA)k)) 

Proof. Let 1uh denote the solution to (2) in the case where f and g have been 
replaced by (AM - 1)kf and (AM - l)kg, respectively, i.e., 

6h(u, v) = ((AM - 
J)kg, v(h)) - ((AM -I)kf, v(-h)) 

V v E H1(E-h, hi; SC) n L2([-h, h]; 6) (A1/2)). 

We then get that 

61h((A 1M)kih, v) = 6(u, (A -M)kv) = ((AM -,)kg (A -M)k (h)) 

-((AM - )kf, (A -,M)k v(-h)) 
= <g, v(h)> - <f, v(-h)> 

V1 v (= H ([ -h h]; Xt) n L 2( -h, h ]; 61: (A 1/2)), 

and hence (A -M)ki7h = uh. Since jj "E H'([-h, h]; 9C) f L2([-h, h]; 6i'(A 1/2)) 

the desired result now immediately follows. EO 
The regularity result we need for the dimensionally reduced solutions uN is the 

following. 

LEMMA 2.3. Let uN = go xp(y/h)xj denote a dimensionally reduced solution of 
order N. If, for some integer k > 0, f, g E 6D ((AM - )k), then 

x 6 1D((M -1A)k+ 1) Vj: 0 < j < N. 

Proof. Let x E 5JN+ 1 denote the vector (xo, . .. , xN). It is clear that x is the 
solution to 

hCA 1/2x, A1/2y> + h-KDM1/2x, M'/2y> = <r, y> V y E[6D(A 1/2)]N+l, 

where C = { ci}1 .0, D = {dii} N0, and r = (r,} N are given by 

Cj = f i (y) j(y), du 
= 
d=ii) , d 

and r, = xi,(l)g - 4i,(-I)f, respectively. (We have here used < * > also to denote 
the inner product E, O<xi,, yi> in 9CN+ 1.) 
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Due to the fact that A is selfadjoint and M bounded, we get that x E [6D (A)]N+ l 
and 

hCAx + h -'DMx = r, i.e., Ax = h -'C'r - h -2C- 'DMx. 

By successive application of this equality it follows that r E [6D ((AM - I)k)]N+1 

implies x E [6D ((M -'lA)k+ 1)]N +1 This finishes the proof of the lemma. l1 

3. A Posteriori Error Estimation in the General Case. As already mentioned in the 
introduction, one purpose of this paper is to derive a reliable technique for a 
posteriori estimation of the error introduced by dimensional reduction. The error 
here is measured in the energy-norm. The key ingredient of this technique is a 
so-called estimator Est, which we now proceed to define. 

Let c E H '([-h, h]; 9C) be the solution to 

Ph( M = -Ph( 4)MUN - bhAu4 in ] -h, h[, 

(5) | aa d Me = g -ah dy MUN fory = h, 

ah dM = f- ah d MUN fory = -h. 
hdy hdyMU 

The exact meaning of (5) is 

c E H'([-h, h];9C) and 

(6) ..Lh ah\ lM C, M W/24 v) dy = <g, v(h)> - <f, v(-h)> 

| -f ah(M/ uNx M1/2 v ) dyf - bh<AuN, v> y 

Vv E H'([-h,h]; J). 

In Eqs. (5) and (6) we have used the fact that uN(y) E 6D (A), which immediately 
follows from Lemma 2.3 with k = 0. 

Since (6) is a Neuman problem for c, it only has a solution provided 

< g X> - <f, x> -|h bh<AuNh, x> dy = O v x E 'K. 
-h 

Because of the equations defining uN, it follows that this is true if 

(7) 1 E span{%bjj o. 

Note. According to Theorems 3.1 and 4.1 of [6], condition (7) is in general 
necessary and always sufficient to ensure that 

|||u - UNhIlE 3_O for h -> O. 

Certainly (7) is satisfied for any optimal sequence of basis functions. 
We now define 

(8) Est=(fhah M1/2 d 2 
)1/2 
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The function c is clearly not uniquely determined, but, since only de/dy is 
involved, Est is well-defined. We shall now show that the estimator Est exhibits 
some very attractive properties. 

THEOREM 3.1. Let Uh be the solution to (2) and uN a dimensionally reduced solution 
of order N > 0 corresponding to a sequence of basis functions that satisfies (7). If Est 
is as defined in (8), then 

hu - uhIIIE < Est. 

Note. In the terminology of [1] this theorem says that Est is a 'guaranteed' upper 
estimator. 

Proof. Clearly 

uh - UNhIIIE = SUpI"h(uh - u, v)/II11vIIIE, 

where the sup is taken over v E Hl([-h, h]; SC) n L2([-h, h]; 6D(A 1/2)). According 
to the definition of c, this is nothing but 

sup f ah(M1/2 dC, M1/2 d v) dY/lIlIVIIIE, 

and, using Schwarz's inequality, we now get 

h ~~d 2 
\1/2 hU - uhIIIE < (J MM1/2 _e|) = Est. 

For use of the estimator Est in actual computations, it is important that it is very 
close to the real error in a wide class of situations. In the terminology of [1] this is 
expressed by the requirement that Est be asymptotically exact. The following 
theorem contains a precise formulation of the asymptotical exactness for the 
estimator Est. It is essential here that the dimensional reduction is based on an 
optimal sequence of basis functions. 

THEOREM 3.2. Let {P}j) o0 be an optimal sequence of basis functions. Let uh be the 
solution to (2) and uh be the dimensionally reduced solution of order N > 0. Assume 
furthermore that f and g are elements of 6D ((AM - 1)[(N + 1)/2]+ 1). 

If Est is as defined in (8), then 

Est = ||uh - uhI|E(1 + 0(h 2)). 

Note. Here [ denotes the integer part. 
Proof. Since f, g E 6D (AM- 1), it follows from Lemma 2.3 and (5) that c in this 

case can be selected so that c E H'([-h, h]; 6D(A)). We now have 

Est= afh(M1/2 'c,M1/2 ?) dy/(f ah M1/2 4 | dy) 
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where the sup is taken over 

v E- H lQ -h, h ]; 93C) n L 2([ -h, h ]; 6D (A 1/2)). 

As shown in the proof of Theorem 3.1, this last expression is equal to 

IIIu" - UkIIE IllelliE! (J aih M1/2 d 2 
)1/2 

The theorem will therefore be proven if we show that e can be chosen such that 

(9) fbhlA 1/2F1|2 dy < CNh2J ah M1/2 M ' dy. 

It is clear that, by appropriately selecting the undetermined constant of c, we can 
obtain 

fhbhI12cI h dAl22 | bh llA l/el y<C2^ah| d A c/e|d 

(10) = Ch2f ah( dye, d4SA) d. 

Now from (6), the definition of c, we have 

f ah(dYe, d ya h=ah(M/2 de, M112 d M -AC)cly 

= (g, M- A(h)> - Kf, M - Ae(-h)> 

f h M(d/2 d Y 
r 

M1/2 4M1Ac) c 

-fbh< M1AE>AN , 

and by introduction of u" this is, because of Lemma 2.3, equal to 

'h(M -A(U - UN), E). 

By an application of Schwarz's inequality, this expression can be bounded by 

IIIM 1A(Uh - U)IIIE* IIIEIIIE. 
From the fact that A is strictly positive-definite together with (10), it follows that 

IIIEIIIE < C(l + h )(fhah 4A1/2E d) 

and, since we only need to consider small h, this now gives 
fhldY 2 

|hah| dA'/E|4 a' = J'h(M -A(Uh - U), E) 

< CIIM1A(Uh - uh)IIIE(f ah d-A1/2E 2) 

By insertion in (10) we conclude that 

(11) 
h 

bhIA 1/2E112 dy < Ch2111M lA(uh - UNk) Ij. 
-h 

For the rest of this proof let us assume that N is even (the procedure for N odd is 
quite similar, only there are slight variations of Lemma 2.1 and Theorem 3.1 of [6] 
needed in this case). 
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It follows immediately from the proofs of Lemmas 2.2 and 2.3 that M -Auh and 
M -' AuN are solutions to the same problems as uh and uh just with f and g 
replaced by AM - 'f and AM - 'g. Because of Theorem 3.1 in [6] and the assumption 
thatf, g E 6D ((AM - )N/2+ 1), we get 

IIIM A(uh - 1U)1E < CNh , 

and this combined with (11) immediately leads to 

| bhllA l112 ay < CNh2N+3. 
-h 

On the other side from Lemma 2.1 it follows that 

CNh 
2N 

u< |||u - UNII1I2 

From the definition of Est and Theorem 3.1 of this paper, we therefore get 

CNh S | aPh M 1/2* 2 dy, 

that is, we have finally proven 

fbhllA 2 dy < CNh2 ah M"/2 d |2I 

Since the estimator Est is to be used in actual computation, it is of the utmost 
importance that it can be calculated very simply. The equations (6) and (8) that 
include the solution of an O.D.E. are therefore not well suited as a formula for the 
calculation of Est. In the following we shall show how easily Est can be calculated 
by means of different formulae. For these formulae to be valid it is essential not 
only that the dimensional reduction is based on an optimal sequence of basis 
functions but also that this sequence satisfies a special orthogonality condition. 

Let _1j} 0 denote an optimal sequence of basis functions which is orthogonal in 
the semi-inner-product f1 ad/dya d/dy dy. (+b is clearly uniquely determined 
modulo a constant and a scalar.) 

We define a sequence % }ojXo by 

f0= 1, 

01(Y) = 4+1(y) - b(t) dt) f1b(t)bl(t) dt 

(k(y) = 4Pl(y) - 41(-1) forj > 2. 

(kj,j > 1, are therefore uniquely determined modulo a scalar.) 

LEMMA 3.1. Let {j oj}% be a sequence as defined above. Let uh = 2.Z= k(yy/h)xj 
denote the corresponding dimensionally reduced solution of order N. If c is as defined 
in (6), then there exist constants {ck} UO and {8k} =O such that 

d--( $-l)(y/h)M (co(f+ g) + To(f-g)) 

+ (* 02)(y/h)hM 'Aclxo forN = 0 
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and 

dE= (d yt'N+ )(Y/h)hM-'A(cNxN-l + CNXN) 

+ (dN+2)(y/h)hM AcN+lxN forN > 1. 

Proof. Since %oj}J? O is an optimal sequence of basis functions, it follows 
immediately that 

N+2 

E = Oj(y/h) ej 
j=O 

for some ej E 'JC, 0 < j < N + 2, i.e., 

d E 
h 

-1( d (ylh)ej. dy d 

For any 1 < j < N and x E 6D(A1/2), 

KMe, x>f a(4d4j) 'dy = (M /12, M1/2x)hf ah( d [41(y/h)]) dy 

= hh ah(M1/2 d E, M1/2 d 
[oj(y/h)x]) dy, 

where the last equality is due to the fact that {4o}j) o is orthogonal in the 
semi-inner-product f j1 ad/dy - d/dy * dy. Now from (6) we get that the last expres- 
sion is equal to hiJh(uh - uN, 4j(y/h)x), and this vanishes because uh is defined 
as a projection. We have therefore proven that 

KMei, X> = 0 V 1I j < N, x E 6D(A 1/2), 

or 

(12) ej- = 0 < j <N. 

For j = N + 1 we get as before 

<MEN+11 X>f a(4v 4N+l) dy 

= hf ah(M/-d e,M1/24 [4N+I(y/h)x]) dy, 

and this is, according to (6), equal to 

h<g, kN+1(1)x> - h<f, ON+I(-1)x> - hfh bhAuN, PN+l(y/h)x> dy. 

In this identity we also used the orthogonality of the oj's. Concerning the last term 

hf bhKAuN, ON+ l(y/h)x> dy = h2 N <Axj, x> b(y)Oj(y)ON + I(y) dy. 
-h j=O I 

This vanishes for N = 0, because f1 ' 
b(y)O1(y)dy = 0, and therefore establishes 

the formula for EN+ I in the particular case N = 0. 
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In the following we are left to consider N > 1. Let i be any integer 0 < j < 
N - 1. Then 

(13) fb(y)0(y)0N+I(y) dy = f 1dya dy ('pI Iy)adyY)),N+ 

where the aj's are selected such that P(i+ a,t) = j. 

Tlhis is possible because _ j) is an optimal sequence of basis functions. 
Since N > 1 and fyJ1 ds/a(s) E (XI(P), we also have that 

:N+1(l) - N+1(-) =fa-(f da(s) )y4N+1 av = 0 

We already know that ON+ 1(- 1) = 0, i.e., we conclude 

(14) 'ON+ 1() = ON+ 1(-1) = O. 

It follows immediately from an integration by parts in (13) and application of (14) 
that for any integer 0 < j < N - 1 

=j+2 ,f1 d d= | b(y)4pj(y)(pN+,(y) ay Ea,| a(y) d "i d 0N+ ay = O. 
i=O_ 

The last identity is due to the orthogonality of { j}J and the fact that i < N + 1. 
In summary we have therefore proven 

<MEN+l, x> a( dy4 N+l), dy = -h hbhKAuN, 4N+l(y/h)x> dy 

(here again we used (14)) 

h2( <AxN-I, x>f b4)N-14N+, dy + <AxN, x> boN4N+1 aye), 

that is, 

(15) N+I = h 2M 'A (cNxN + CNxN), 

with the explicit expressions for CN and CN as given above. 
Along exactly the same lines we also get 

EN+2 = h2M1ACN+,XN, 
and therefore the desired result for the function de/dy. EI 

Lemma 3.1 immediately leads to 

THEOREM 3.3. Let % y})]% be a sequence with properties as in the previous lemwa. 
Let uN = 3jZ=o 4j(y/h)xj denote the corresponding dimensionally reduced solution of 
order N. If Est is as defined in (8), then there exist constants { CJ k.o and {kCk}X-0 
such that 

Est = h3/2(jjM-"12(C0(f + g) + Co(f- g))112h-2 + IIM-1/2ACixoII2)1/2 
for N = 0 

and 

Est-= h3/2( M - 1/2A(CNxN + CXN)II2 + 1IM-1/2ACN+lXN112)I/ for2 N 1. 
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From the formulae contained in the proof of Lemma 3.1 it follows that the 
constants {Ck, Ck}k=O and { Ck, Ck}k=O', respectively, are readily computable based 
on the sequence {4p}J) O. The following example gives the exact values in the case 
of constant coefficients a and b. 

Example 3.1. If the functions a and b are both constant, it immediately follows 
that every optimal sequence of basis functions {A7}5' O satisfies 

span{#}J0 = all polynomials of degree < N 

for any N > 0, and vice versa. 
The specific optimal sequence of basis functions {4o}J)jo used in Lemma 3.1 and 

Theorem 3.3 is now (modulo a scalar) 

fo = 1, +1(y) = Y, 

(1(y) =f _?1Y(t) dt, j > 2, 

where Ik denotes the Legendre polynomial of degree k (normalized so that 

f 1 4k2(t) dt = 2/(2k + 1)). 
Because of the alternating even and odd polynomials, it immediately follows that 

ck=Ck=O Vk>O. 

Simple algebraic manipulations with the Legendre polynomials now give 

co= 1/2a, cl = b/a 

and 

Ck = b/ ((2k - 1)(2k - 3)a) for k > 2. 

From the definition of Ck it immediately follows that 

Ck = (fia( 'Ok+l) ) dy/ ck, 

i.e., 

CO =[1/2a] 1/2, C1 =[2b2/3a]1/2, 

and 

Ck = [2b2/ ((2k + 1)(2k - 1)2(2k - 3)2a) ]/2 for k > 2. 

We shall now show how one can derive another set of formulae for the a 

posteriori error estimator. As it will turn out these formulae are much better suited 
for practical applications. For the case N = 0 it is clear that Axo = Ch - l(f- g). 
In the following we therefore only consider N > 1. 

LEMMA 3.2. Let { Ck}=O, { Ck} =O and uN = lj"4= kj(y/h)xj be as in the previous 
theorem. Then there exist constants DN, 1 < i, j < 2, such that 

A(CNxN-I + CNxN) = h 'DN M( g - ah d Muh(h)) 

+ h-DN2M( f - ah ai MuN(-h)) 
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and 

ACN+lxN = h-DiN2( g- ah d MuN(h)) 

+h 'D 2(f2 ah d MuN(-h)) for N > 1. 

Proof. From (5) and Lemma 3.1 it follows that 

-Ph( d) MUN - bhAuN = 
d 

( ad N+,) (y/h)A(cNxN_l + CNXN) 

-( da d4 +2)(Y/h)AcN+lxN. 

If we integrate the right-hand side of (6) by parts, set v = 40(y/h) * x, and apply 
the identity (16), the result is 

hdN'A(cNxN- + cNxN) + hdN2AcN+lxN =g - f - a4dMukI'h 

with 

d' =f-4a-4qkN+l cIy and dN12 =dyl.N+d 
dy IjTaW~~~~d 

Performing the similar procedure with v = 41(y/h) * x, instead we get 

hdN'A (cNxN-l + CNXN) + hdN2AcN+1xN 

- (l)( g - ahd MuN(h)) - 1(-I)(f- ah.d MuN(-h)) 

with 

dN =f | aWdkN+l(kl dy and d22 =f Wa4 d N+21 dY. 

The lemma therefore immediately follows if the matrix 

dN =dN }2j= I 

is always invertible. The proof of the invertibility follows by contradiction. Assume 
dN is not invertible for some N. This implies that some nontrivial linear combina- 
tion of the columns of dN vanishes. In terms of the functions 4N+1 and kN+2 this 
says that some nontrivial linear combination s14IN+ 1 + S24NN+2 exists such that 

(17) f-ld aW(sI4WN+I + S24N+2)V dY = 0 

for v = p0 and v = 41. By performing an integration by parts we easily see that this 
identity must also hold for v = 0j, 2 < j < N. Since the sequence {4j% 0 is an 
optimal sequence of basis functions, we know that 

d d N 
- a-W (SIN+ 1 + S24N+2) = b I a>+> 

j=O 

for some set of constants {ja>} No. Combining this with (17) we conclude that 
d d 

-ya-W(sl4N+I + S24N+2) = 0. 



374 M. VOGELIUS AND I. BABU?KA 

Due to the fact that s1ION+ I(Y) + S24NN+2(Y) = 0 fory = +1, this implies 

SO4N+I + S24N+2 = 0, 

which obviously contradicts the fact that this is a nontrivial linear combination. 

[] 
The difference between the formulae given in Theorem 3.3 and those that are 

based on Lemma 3.2 is that while the first include elements of the form Ax1 the 
latter are expressed solely in terms of f, g and the xj's. In practical applications we 
seldom know the exact values of the xj's. Instead we compute some approximate 
values x;, e.g. using a finite element method. The error introduced by using 
approximate values, derived from finite elements, in the expressions of Lemma 3.2 
can be neglected. The reason is that the difference between xj and xj in the SC 
norm (viz. L2) is normally very small. The problem with the expressions of 
Theorem 3.3 in this context is that in general Axj is not at all defined. 

As before we now give the values of the constants DN in the case where a and b 
are both constants. 

Exanmle 3.2. Assume a and b are constants. In this case we already know that 
CN = 0. Lemma 3.2 therefore reduces to formulae for ACNxN_1 and ACN+1XN, 

N > 1. It is easily seen that these are 

ACNXN-1 = h 1(2a(2N + 1)) /2 [(g - ahd MuN(h)) 

+ (I)N (f-_ ah. d MuN(-h))] 

ACN+lxN = h-1(2a(2N + 3))1/2[(g - ah h MuN(h)) 

+ (i)N+1 (f - ah d MuN(- h))] 

forN > 1. 

4. Improved Error Estimation-A Specific Example. As mentioned before it is very 
important that we are able to estimate the error accurately. Theorem 3.2 shows that 
our estimator Est does exactly that provided the data is sufficiently regular and h is 
not too large. In this section we shall address the problem of how to detect if the 
estimator Est is too conservative, due to singularities in the data or large h, and 
what can be done to correct it. For simplicity we consider the model problem 

[(aa) + (a) Uh in uh=]0, I [ x ]-h, h[, 

au=h fory =h, 

auh a = -g fory = -h, 

uh = O forx = 0, 1, 

where g is an element of L2([O, 1]). 
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Let _ Oj?j 0 be the sequence of polynomials introduced in Example 3.1. The 
dimensionally reduced solution of order N, uN, has the form 

N 

Uh(X,y) = j(y/h)v(x), 
j=O 

where Vj E H'([0, 1]), 0 < j < N. Let eN denote the exact error, i.e., eN = uh-u h 

Since everything is even in y, all the terms in the dimensionally reduced solutions 
corresponding to odd indices vanish. From here on we only consider dimensionally 
reduced solutions of even order 2N. Let us start by giving a table that shows the 
relative error (= Jjje2N111E111uh111E) and the efficiency index of the estimator Est 
(Eff = IIIe2NIIIE/Est) in the case g(x) = a/4, for N = 0 and N = 1, respectively, 
and for different values of h. 

TABLE 4.1 
N =0: N= 1: 

h Rel.Error Eff. h Rel.Error Eff. 
1/2 0.67 0.88 1/2 0.121 0.69 
1/4 0.43 0.94 1/4 0.051 0.68 
1/8 0.24 0.97 1/8 0.019 0.68 
1/16 0.12 0.99 1/16 0.007 0.68 
1/32 0.06 0.99 1/32 0.002 0.68 

From the table it is evident that the efficiency index approaches 1, as h -O0, for 
N = 0, but that this is not so for N = 1. The numbers therefore clearly show that 
some smoothness condition, as in Theorem 3.2, is essential in order to ensure that 
this index converges to 1 for h -O0. For most practical applications though, an 
efficiency index of 0.7 is completely satisfactory and no corrections to Est are 
needed. It is also important to note that h = 1/2 corresponds to a square and that 
Est still gives a very reliable estimate for the error. The next table lists the 
efficiency index, also in the case where g(x) = 7T/4, but for N = 2 and 3, and three 
different values of h. 

By a comparison of Tables 4.1 and 4.2, it is seen that the efficiency significantly 
decreases as we include more and more polynomials. 

TABLE 4.2 

N = 2: N= 3: 
h Rel.Error Eff. h Rel.Error Eff. 

1/2 0.045 0.53 1/2 0.022 0.43 
1/4 0.019 0.52 1/4 0.008 0.38 
1/8 0.008 0.55 1/8 0.003 0.41 

In the following we shall take a closer look at the derivation of the estimator Est 
for the purpose of suggesting corrections that can increase the efficiency to any 
desired level. We shall only work out the details of a first correction. 
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The exact error e2N is the solution to the boundary value problem 

[(a)2 + ( a )2] in Qh, 

ae2N 

ay = P2N fory = h, 

ae2N 
ay =-P2N fory = -h, 

e2N =0 forx = 0, 1, 

with 

r2N ax- [( + ( ay )2V 

and 
ah 

P2N = g(x) - a U2N(X, h). 

In terms of complementary energy the norm of e2N, IIIe2NIIIE, can now be char- 
acterized by 

IIe2NIIIE 
= 

m1 
2_ ff h 

(s2(x,y) + t2(x,y)) dy dx, 
(s,) EJJ_ 

where 
(s, t) E iT if and only if (s, t) E (L2(&2h))2, 

a a 
-s + -t = r2N, 

t =P2N for y =h and t = -P2N for y = -h. 

If we define to by 

Ty to = r2N tO = P2N fory=h 
then 

to = -P2N fory = -h, 

and it is clear that (0, to) E 6. On the other hand, it is also clear that Est = 

(fI frh h t2(X, y) dy dx)"12, i.e., Est is simply a particular value of a functional, the 
minimal value of which is the exact norm of the error. One way to improve the 
estimator Est is therefore to take the minimum over more than just the single 
function to. This should not be exaggerated since we also have to keep the formulae 
simple. Define 

s(x, y) = r ( ) - ( )( y d )(/h)) dz 

and 

t(x,y) =hr2N(XMyh), 

where r2N(x) denotes the function 

r2N (x) = hh r2X dy, 
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and D is an arbitrary element of H '([-1, 1]). It is obvious that 

a a a s + a t = r ax ay N 

If furthermore D satisfies '(1) = 1, '(- 1) = -1, it also follows that 

t = P2N fory = h and t = -P2N fory =-h. 

From Lemma 3.1 we get the identity 

r2N(X,Y) d1(2Nl2 I+l)(Y/h) i2N(X), 

where 12N+ 1 as before denotes the Legendre polynomial of degree 2N + 1, so it 
immediately follows that 

(I hS (x,y) + t2(X,y)) dy dx) 

=S (hf12 fdx )2d 

(~~~~~~~~~~ 1- 1 o 

+ hf( 4 (12N + I (Y) y)) fl(f X2N dx) 

It should be noticed that the estimator Est is obtained from this with the choice 

t(Y) = 12N+C(Y). If we define 

A(h)= h3f (2N ())2d 

and 

B(h) = hl(f r2N) dx, 

then the previous expression can be written as 

(18) (f D 2(y) dyA (h) + fi(4 (l2N+I(Y) - (y))) dyB(h)) 

It is easy to see that the minimum of this expression over D approaches 

(f 12N + (Y) dyA (h)) = Est 

as A(h)/B(h) -O0. In the case that A(h)/B(h) -- oo, the minimum of the expres- 
sion (18) approaches 

(4A (h)B(h))114 

Based on these asymptotics we introduce a new estimator Est, by 

( Est if A(h)/B(h) < , 

(4A (h)B(h))'/4 if A (h)/B(h) > T, 

where T is some specified constant. The quantity A(h)/B(h) will therefore tell us 
whether we shall use the value of the old estimator Est or not. Since we know that 

hr2N(X) = P2N(x), A(h) and B(h) can very easily be expressed in terms of P2N. It 
follows from this that A (h)/B(h) is small exactly if h is small and P2N is sufficiently 
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smooth. Since the smoothness of P2N may sharply vary on the interval [0, 1], we get 
that the estimator Est may well give a good estimation of the error in parts of [0, 1] 
but not in others. We therefore divide the interval [0, 1] into K disjoint subintervals 
Ij, 1 < j < K, and define 

K 1/2 
Est2= ( EstI((I.)2 

where Est,(IJ) refers to the estimator Est, computed on the interval I. The 
following table shows the efficiency index of the estimator Est2 (Eff2 = 

IIIe2NIIIE/Est2) in the case g(x) = sT/4 for N = 2, 3 and three different values of h. 
The interval [0, 1] was divided into eight subintervals of equal length, i.e. K = 8, 
and the constant T in the definition of Est, was chosen to be 102. 

Although the efficiency index is not quite 1, Table 4.3 shows a definite improve- 
ment over Table 4.2. Again note that the efficiency is almost independent of h. If 
additional accuracy of the estimator is deemed necessary, this can obviously be 
obtained by an extension of the technique used to derive Est2. Whether such 
additional corrections are worthwhile in the end of course depends on the balance 
between the cost of computing the estimator and what is computationally to be 
gained from a more accurate estimator. 

TABLE 4.3 

N = 2: N= 3: 
h Rel.Error Eff2 h Rel.Error Eff2 
1/2 0.045 0.62 1/2 0.022 0.60 
1/4 0.019 0.59 1/4 0.008 0.53 
1/8 0.008 0.62 1/8 0.003 0.56 

5. Some Remarks on an Adaptive Strategy. As already mentioned in the introduc- 
tion, the goal of this paper is not only to derive reliable estimates for the error, but 
also to use these estimates as tools in an automatic selection of the right order 
dimensionally reduced solution for a given problem. 

First let us introduce a slight generalization of the concept of dimensionally 
reduced solution. Instead of projecting onto the space {( 4'Aj(y/h)xjIxj E 

ID(A1/2) j = 0, . .. , N), we project onto {EN 0 4G(y/h)xjJxj E 9C, j = 
O, ... , N), where {9 Yj }. is a family of closed subspaces of 6D(A 1/2). 

To see the importance of this generalization and describe the ideas behind the 
self-adaptive strategy, we shall consider the case that A is a differential operator on 
some domain R. Let Q be divided into k disjoint subdomains gig, 1 < i < k, and let 
Ni, 1 < i < k, be k nonnegative integers. Set YCj = {u E 6D(A1/2)Iu(x) = 0 for 
x E U N <iXg}, the extended concept of dimensionally reduced solutions with this 
family { NCj }=O' N = maxi{Ni,) is one that permits different order of the dimen- 
sionally reduced solution in different parts of the domain R. This is extremely 
important for practical applications, where a low order dimensionally reduced 
solution may very well be satisfactory in the interior of the domain and away from 
singularities in the loads and at the same time a high order solution is required near 
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the boundary or near singularities. As a total estimator for the error, let us use an 
expression of the form 

k 1/2 

(19) ( [,q(Ni)]2 

where ,i(NA) refers to some estimator on the domain Qi with respect to dimensional 
reduction of order Ni. (mqi could for example be the estimator Est or the corrected 
estimator Est2 of the previous section.) 

To set a goal for the 'best' distribution of the orders { NiJk= for a dimensionally 
reduced solution we need the concept of cost. Let us assume that the cost of 
(solving) the dimensionally reduced problem with orders {}Ni}k Iis given by 
X =I(,BNi + 1)am(QU), where a and /3 are two positive constants and m(&li) is some 
measure of Oi 

As a 'best' distribution of the orders for a dimensionally reduced solution we 
define one which for a given cost minimizes the energy norm of the error. (We 
could also have defined a 'best' distribution as one that for a given value of the 
energy norm of the error minimizes the cost. Which of these two definitions we 
take makes no difference in the strategy we propose.) 

The following is very heuristic in nature and by no means an exact verification 
that the strategy works. Let us use the expression (19) as if it were the exact norm 
of the error. Secondly, let us assume this expression to be defined for all positive 
values of the Ni's, and not only integers. By introduction of Lagrangean multipliers 
it is easily seen that a 'best' distribution of the Ni's has to satisfy 

(20) 3 C (independent of i) such that (a/aN)([(N ) J2) C v 
( 3Ni + l)al m(Qi) 

In practice we only have the values of the Xi's at integer points and a discrete 
equivalent of (20) is then 

(21) q1i(N, + 1)]2 - iP1f)]2 C, Vi 
(flNi + l)a1 m(Qi) 

We shall also assume that rJi(Ni + 1) is significantly smaller than qi(Ni), so that 
instead of (21) we get 

(22) [71iNi)]2 _ - C, V i. 
((1N + l)a-1m(Q() 

The strategy we propose is one that aims at equilibrating the left-hand sides of 
(22). We do this in a way similar to the adaptive finite element solver F.E.A.R.S.; 
cf. [11. Let us assume that we have arrived at a distribution 1N5o ?k and that the 
estimate for the error is unacceptably large. Our strategy is simply to find j such 
that 

8 = [qj(N )]2 

(18N0 + 1) m(Qj) 

is maximal, and then increase Nj0 by 1. In the next section we shall see how well 
this performs in a practical example. 
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6. A Numerical Example. Consider the same problem as in Section 4, namely 

[(a) (ay) in h=]O, I[X]-h,h[, 

auh au, =g fory=h, 

auh 
- =-g fory=-h, 

uh = O for x = O, 1. 
Let [0, 1] be divided into the four subintervals Ii = [(i - 1)/4, i/4], 1 < i < 4. A 

dimensionally reduced solution can now have different order in the different 
intervals Ii, 1 < i < 4. As basis functions we choose the polynomials introduced in 
Example 3.1. 

TABLE 6.1 

\N2 0 2 4 6 

2N1 
0.3974 0.3257 0.3168 0.3160 

0 

1 4.5 14 32.5 

0.3662 0.0730 0.0721 0.0720 
2 

- - - - ~~~~~error 
4.5 8 17.5 36 _ 

0.3517 0.0383 0.0270 0.0270 work 
4 

h? 
14 17.5 27 45.5 

0.3499 0.0292 0.0134 0.0134 
6 

32.5 36 45.5 64 

2N2 0 2 4 6 

21 
0.3014 0.2296 0.2270 0.2267 

1 4.5 14 32.5 
0.2540 0.0359 0.0359 0.0359 

4.5 8 17.5 36 error 

0.2484 0.0134 0.0130 0.0130 
4 _ _ - - work 

14 17.5 27 45.5 h = ? 

0.2479 0.0063 0.0055 0.0055 

32.5 36 45.5 64 
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The equations that define the dimensionally reduced solutions are solved by 
introducing a finite element discretization in the x-direction. Piecewise linear 
functions on a regular mesh are used as test and trial functions for the finite 
element method. Since we want to illustrate the behavior of the dimensional 
reduction, and are here not interested in any contribution from the x-discretization, 
we choose a very fine grid of meshsize = 2-9. The involved linear equations are 
solved by a Cholesky decomposition combined with iterative refinement. In the 
computations that we present here g(x) is chosen = 7T/4. Since this choice of 
boundary data makes the problem symmetric in the line x = 2 we only need 2 

consider x in the interval [0, 2]. Let 2Nj, 1 < i < 2, denote the order of the 
dimensionally reduced solution in Ii. The above table shows the error on the 
whole interval [0, 1] (= IIIe2KIIIE) and the work (here defined by l(N1 + 1)' 
+ 1 (N2 + 1)3) as a function of the paii N = 2N = (2Nj, 2N2) for two different 
values of h. 

Based on the numbers in this table we can now find the entries with the property 
that the error is smaller than any error obtained with the same or less work. These 
entries are marked in the following table. 

TABLE 6.2. 

\@N2 0 2 4 6 
2N12 

0 

2 

/ Z | ~~~~~~~~~~~h =-2 

4 

6 

2N2 0 2 4 6 
2N 

0 

2 

OF_ 
_ h = 4 

4 

6 <= 
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Tables 6.1 and 6.2 clearly illustrate the advantage of a nonuniform distribution 
of the polynomials. It is easy to see that the true solution uh in the limit as h -*0 
has a parabolic behavior in the y direction, also for x in the middle of the interval 
[0, 11. This is reflected in the fact that the pair (0, 2) is slightly better than (2, 0), it 
also explains the significant decrease in the error obtained by choosing the pair 
(2, 2). For the higher order polynomials there is a clear tendency towards con- 
centration near the boundary x = 0 (and x = 1) in the entries marked in Table 6.2. 
This concentration is more visible the smaller h is; for h = 2 the pair (6, 2) is not as 
good as (4, 4) but for h = 1 the error obtained by (6, 2) is less than half the error by 
(4, 4) with only a slight increase in the work. 

We now want to test the adaptive strategy outlined in Section 5 on this example. 
We consider the case h ! where nonuniformity in the distribution of the 
polynomials is most advantageous. As an estimator we use Est2 of Section 4, with 
the constant T set to 102 and each interval I divided into 2 subintervals of length 8. 

The following table shows the efficiency of Est2 (Eff2= i e2NV11E/Est2) as a 
function of the pair 2N = (2N1, 2N2). It is evident from Table 6.3 that Est2 
provides a reliable estimate for the error even in the case of variable order. We also 
note that Est2 is not necessarily an upper bound for the error, when the orders of 
the polynomials are allowed to vary. Steps could be taken to correct this, but on 
the other hand computational experience shows that this effect is insignificant, and 
that Est2 is very close to an upper bound in most cases. 

TABLE 6.3 

2N 
2N1 22 4 6 

0 0.94 0.99 1.00 1.00 

2 1.06 0.68 0.68 0.68 Ef 
Ef2 

4 1.09 0.60 0.59 0.59 h = 4 

6 1.09 0.57 0.53 0.53 

Let us start with an initial distribution for the orders of the polynomials given by 

(2N1, 2N2) = (0, O). 

Based on the present formula for the work and the error estimate, we now compute 
8j,j = 1, 2, as in Section 5. The result is 

SI = 82 = 0-10. 

We can therefore proceed to both (0, 2) and (2, 0). According to Table 6.1, (0, 2) 
is only slightly better than (2, 0), so this apparent "failure" of our strategy is of very 
little significance. 
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For the pair (0, 2) we compute 

81 = 0.10, 82 = 0.14 x 10-2 

and for the pair (2, 0) 

81 = 0.31 X 10-2, 82 = 0.10. 

In both of these two cases we are told to proceed to the distribution given by 

(2, 2). 
For this pair we get 

8, = 0.14 x 10-2 and 82 = 0.59 X 10-6, 

i.e., if we want higher accuracy with dimensional reduction, our strategy selects the 
pair 

(4, 2). 

In this case 

81 = 0.14 x 10-3 and 82 = 0.16 x I-O, 

so that additional requirements to the accuracy will lead us to the distribution 

(6, 2). 
The path that our strategy goes through can schematically be represented as 

(0, 2) 

(0, 0) (2, 2) (4, 2) (6, 2) 

(2, 0) 

and based on Tables 6.1 and 6.2 this is clearly seen to be a very good choice. The 
strategy has been tried in a variety of other situations and has consistently been 
very effective. It has also been tried with different measures for the work. Here it 
should be noted that by changing the measure of the work we may entirely change 
the "best" distributions for the polynomials, but the strategy detects that easily. 

7. Conclusions. In the following we list some conclusions concerning the ap- 
proach of dimensional reduction developed in a series of three papers ([6], [7], and 
the present). 

(a) It is common in engineering to distinguish between structures with large and 
small thickness (see, e.g., [3]). The approach presented here entirely avoids this 
somewhat artificial categorization. 

(b) This approach gives, in an optimal and adaptive way, the advantages of 
asymptotic expansion (when the thickness is small) and the effectivity of the 
spectral or p-version methods (when the thickness is not small, or strong singular- 
ities are present). It has been shown that these two requirements uniquely char- 
acterize the approach. 

(c) Reliable a posteriori error estimates can be obtained for this approach, and 
they lead immediately to an effective adaptive strategy. 

(d) The approach is numerically very robust and works well independent of the 
thickness and the regularity of input data. 
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(e) The underlying mathematical theory and numerical experiments show the 
direction for various generalizations. These shall be dealt with elsewhere. 
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